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1. Introduction 

1.1 Problem Statement (Driving – Drowsiness Causes Crashes) 

The significant role of drowsiness in motor vehicle accidents is a serious concern for both the 

public sector and the military. In 1990, the U.S. National Transportation Safety Board (NTSB) 

determined fatigue to be the most frequent factor in U.S. fatal truck crashes (1). Another NTSB 

study in 1995 found that 58% of the 107 non-fatal single-vehicle roadway departure truck 

crashes were related to fatigue (2). Dinges et al., cites that fatigue can be at least partially 

attributed to 2%–23% of all crashes (3–7), 4%–25% of single-vehicle crashes (8, 9), 10%–40% 

of long motor way crashes (10, 11), and 15% of fatal single-vehicle truck crashes (8).  

Studies on the incidence of drowsiness-related motor vehicle accidents indicate that drivers are 

generally ineffective in judging performance degradation due to drowsiness until they are 

severely impaired to the point of head bobbing (12). This indicates that real-time drowsiness 

detection systems are needed for the typical driver to enhance their ability to judge drowsiness 

onset. 

1.2 Objective of this Project 

Defining the drowsiness state is subjective and beyond the scope of this report. Rather than 

attempting to assess drowsiness, this report reflects a portion of a larger project proposing to fuse 

multiple sensor modalities in order to predict fatigue-induced driver performance through the 

integration of electroencephalography (EEG), eye-tracking sensors, and behavioral monitors. As 

an initial step towards the prediction of driver performance degradation as a result of drowsiness, 

the work described in this report aims to complete the following two objectives: 

1. Implement an improved, fieldable algorithm for the automatic detection of alpha bursts. 

(Accomplished) 

2. Quantify cross-correlations between eye-tracking features, alpha bursts, and fatigue-related 

driver performance measures. (Partially Accomplished) 

This report describes the methodologies we employed to accomplish the automatic detection of 

alpha bursts in EEG, the eye-tracking analysis, the behavioral analysis, and the cross sensor 

correlation analysis. This report also highlights the effectiveness of using these methods, 

discussing the reasons that some of the methods used were ineffective within this particular 

implementation. 

1.3 State of the Art Fatigue Systems 

Several real-time drowsiness monitoring systems have been, or are in the process of being, 

developed, but the technology has not yet reached an acceptable level of accuracy for the Army.  
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This is due in a large part to the difficulty in defining the abstract concept of “drowsiness” in 

clinically measurable terms. Some promising technologies for predicting behavioral performance 

indicators of drowsiness are EEG, eye-tracking measures, and driver performance. Each of these 

sensor modalities has been individually correlated to the state of drowsiness. Spectral power has 

a characteristic distribution in EEG recordings of the parietal and occipital regions of the brain 

during the drowsiness state as compared to REM sleep and other states, as seen in figure 1 (13). 

Furthermore, using EEG, Picot et al. (14) were able to achieve 85% sensitivity and 20% 

specificity in assessing drowsiness. PERCLOS of the eye, defined as the percentage of time the 

eye is at least 80% closed, has been highly correlated to drowsiness; it yields a 20-min bout-to-

bout coherence Pearson correlation coefficient of 0.878 (15). The eye-tracking measures of pupil 

constriction and oscillation are also valid measurements for drowsiness detection (16). Many 

vehicle-based drowsiness detection systems use behavioral measures, such as standard deviation 

of lateral lane position (STDLAT), to assess sleepiness. STDLAT has been correlated to the 

Karolinska Sleepiness Scale (KSS), with a chi-squared value of 11 (p < 0.001) (17).  For this 

study, we look at the cross correlation of behavioral, eye-tracking, and EEG as a means to 

understanding how multiple sensor modalities can be used to improve the sensitivity and 

specificity of drowsiness prediction. 

 

Figure 1.  Spectral power contribution of sleep-alpha variants 

(drowsiness alpha activity and REM-alpha bursts) over 

frontal, central, parietal and occipital regions. Note the 

higher spectral contribution of the slowest components 

(7.8–8.6 Hz) during REM alpha bursts as compared with 

drowsiness-alpha activity (13). 
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1.4 EEG—Definition and Relation to Drowsiness 

EEG is the study of the electrical signals generated by the human brain.  Most notable to the field 

of electroencephalography, an electroencephalogram is a device that simultaneously records the 

voltage across a reference electrode (or set of reference electrodes) and many additional 

individual electrodes, all positioned on a subject’s scalp.  Since its initial use in 1929, 

physiologists have inferred that an EEG’s electrical readings are a measure of the electrical 

activity of the brain (18).  The changes in electrical potential of a particular electrode over time 

have been interpreted as the temporal changes in neurological response, which spatially 

correspond to a specific region of the brain. The distribution of electrodes over the scalp provides 

a means for comparison of neurological responses in different regions of the brain at a particular 

instance in time.  Most current, lab-based systems EEG devices consist of 16–256 electrodes 

snapped into a form-fitting cap placed on the subject’s head, and require conducting gel to 

facilitate an electrical connection between the scalp and the electrodes.  Systems designed for 

gaming tend to have even fewer electrodes and many utilize dry electrode technology. 

1.5 Current EEG Analysis Approaches to Measure Drowsiness 

Recent research has explored the correlation of EEG signals with behavioral indicators of 

drowsiness.  Studies have found that the onset of drowsiness is typically associated with an 

increase in brain activity in the alpha and theta frequencies (8–13 and 4–7 Hz, respectively) 

coinciding with a decrease in brain activity in the beta band (14–60 Hz) (18, 19).  

EEG recordings from subjects participating in a driving simulation were obtained to assess the 

viability of using a means comparison test to monitor the (α + θ)/β ratio as a drowsiness 

detection algorithm (14). This method did not predict driver performance; instead, this algorithm 

attempted to assess whether or not a subject was drowsy. The algorithm’s output was compared 

to an expert’s drowsiness assessment of many 20-s EEG segments, boasting 85% sensitivity and 

20% specificity for assessing drowsiness. The main advantage of this algorithm is that it can be 

run in near real time on a single EEG channel, making it a fieldable algorithm. However, this 

algorithm is limited in that it attempts to assess the complex physiological state of drowsiness. 

Furthermore, power ratios are not ideal indicators for detecting fatigue due to the detrimental 

effects that artifacts and noise—which are present in field environments—have on these metrics 

(20). 

Simon et al. (20) proposed that the detection of alpha bursts is a more robust measure of fatigue 

in the presence of artifacts. Alpha bursts (pictured in figure 2) are characterized by narrowband 

increases in power within the alpha frequency band (8–13 Hz) and are typically observed in a 

subject’s EEG signal when transitioning between drowsiness and the early stages of sleep (14, 

19, 21). Simon et al. compared alpha burst frequency and alpha power in subjects during a real 

driving task. The frequency of alpha bursts increased by 90% from the awake to drowsiness 

states whereas alpha power only increased by 32%. The findings indicate that alpha burst 

detection provides a more accurate drowsiness assessment than power measures under real 
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driving conditions. The main advantage of this algorithm is that it uses a single EEG channel and 

is relatively robust in the presence of noise and artifacts. However, this algorithm does not work 

in real time and is, therefore, not field-implementable. In this study, we avoided the issue of 

defining the drowsiness state. Instead, we accepted that alpha burst frequency is a robust 

indicator of the transition between being awake and asleep and intended to improve upon the 

Simon et al. alpha burst detection algorithm by implementing it in real time and optimizing its 

parameters (20). 

 

Figure 2.  Example of alpha burst in the parietal and occipital regions of the brain (20). 

1.6 Eye-tracking 

Recent advancements in eye-tracking technology have enabled the eye to be monitored remotely, 

making this device the least intrusive. Eye-tracking techniques usually consist of a table or 

dashboard mounted camera with software that uses feature extraction for each image to record 

measures such as PERCLOS, pupil diameter, and gaze distribution (GAZEDIS).  As shown in 

figure 3, there has been a substantial amount of causal interaction research that has linked a 

number of different exposures to potential fatigue outcomes (22).  Ji et al. (22) have used this to 

develop a statistical Bayesian Network causal relationship between exposure and outcome. 

 

Figure 3.  Work by Ji et al. (22) highlighting the causal interactions and outcomes regarding fatigue.  
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1.7 Current Eye-tracking Systems to Measure Drowsiness 

Drowsiness is an inherently difficult physiological construct to experimentally define.  Many 

researchers, instead, correlate behaviors or physiologically measurable factors to outcomes, thus 

obviating the need to strictly define “drowsiness.”  The Federal Highway Administration has 

determined the most effective measure of alertness, the inverse of drowsiness, to be 

PERCLOS—defined as the percentage of the time that the eye is at least 80% closed (1).  A 

Department of Transportation study strongly correlated PERCLOS with psychomotor vigilance 

test (PVT) performance lapses, which is a well-documented good test for driving alertness 

performance measure (15).  More specifically, PERCLOS is defined as the percentage of time 

within a minute that the eye is more than 80% closed (23) and is considered the gold standard for 

measuring alertness (24).  The disadvantage to using PERCLOS as a real-time drowsiness 

measure is that calculating PERCLOS requires a time-delay on the order of minutes. Any time-

delay decreases the efficacy of a fielded drowsiness monitoring system, as driver impairment 

feedback notification will be delayed as well. An incident caused by drowsiness-related 

impairment could occur in the minutes required to process the PERCLOS data; however, except 

in extreme cases, most people do not experience drastic changes in alertness over a few seconds.  

Instead, most people experience a gradual change over many minutes from alert to not alert.  As 

such, PERCLOS measures that have a measurement time of several minutes should be applicable 

for most driving-based applications.  

Many additional eye-tracking measures have been investigated as indicators of drowsiness, 

including pupil diameter, GAZEDIS, and saccadic velocity. The study by Merritt (16) found that 

measures of pupil constriction and oscillation were valid metrics for this application. Russo et al. 

(25) found a correlation between simulation car crash incidence with decreases in saccadic 

velocity (R
2
 = 77%) and increases in pupil constriction latency (R

2
 = 88%). Jain et al. (26) used 

the sum of spectral power from 0 to 0.8 Hz of pupil diameter for 82-s windows as a measure of 

“pupillary unrest” (effect size = 0.9). In this study, we investigated cross correlating the eye-

tracking features of pupil diameter and gaze distribution, since these measures can be calculated 

almost instantaneously. Since drowsiness comes in cycles with both low and high frequency 

components (2, 27), we investigated both short term (minute-to-minute) and long term (10 min 

bout-to-bout) time intervals. A high degree of both inter- and intrapersonal variation in these 

correlates has been previously established (1, 28), so we conducted a variation study both within 

subject datasets and between subject datasets.  

1.8 Behavioral Indicators of Fatigue 

A number of driving performance measures have been established as drowsiness-related. A very 

commonly used metric is lane drifting, measured by the SDLAT (2, 29). A linear trend of the 

SDLAT as a function of the KSS yielded the chi-squared value of 38 (p < 0.001) with an average 

increase of 0.032 m for each level of the KSS (28). Adding a squared component further 

improved the model fit (chi-squared value is 11, p < 0.001), suggesting a curvilinear relationship 
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between the KSS and SDLAT (25). Reaction time is also a very important driving performance 

factor (30) that is highly correlated to drowsiness (31). In this study, we investigated the 

drowsiness measures SDLAT and standard deviation of acceleration.  

In addition, we investigated the drowsiness measures SDLAT and standard deviation of 

acceleration because these measurements were continuous rather than event-specific metrics, and 

they provided enough data for comparison with other sensor modalities. Reaction time was 

rejected as a viable measure of drowsiness in this case, because measurements of reaction time 

occurred at discrete events that often did not overlap with alpha bursting or “good” windows of 

eye-tracking data; therefore, statistically significant analysis using reaction time could not be 

performed on the limited dataset (32).  Instead, we explored the possibility of using the standard 

deviation of acceleration as a substitute for reaction time analysis. Although this metric has not 

been correlated with drowsiness, we assumed that standard deviation of acceleration can be 

interpreted as a continuous measure of a driver’s instantaneous reaction to random deviations 

from the target speed.  

2. Methodology 

In order to accomplish our objectives, two distinct phases of the project were realized, depicted 

in figure 4. The initial data from each of the three sensor modalities were pre-processed, parsed, 

and ground-truthed. Once this pre-processing was finished, an alpha burst detection algorithm 

with the ability to be implemented in near real time was performed post-hoc on the data and 

improved through optimization. Concurrently, correlations between the different sensor 

modalities were established and quantified. 
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Figure 4.  This overarching project map depicts the relationships between three branches of sensor data: EEG, eye-

tracking, and driving performance. 

2.1 Driving Simulation 

The data used in this report were taken from a Driving Simulation Pilot Experiment performed 

by the Human Research and Engineering Directorate (HRED) of the U.S. Army Research 

Laboratory in summer 2012 at Aberdeen Proving Grounds, MD. Twenty-three male subjects 

participated in the experiment.  The simulation consisted of a driving task for which participants 

were asked to drive straight for a period of 45 min to 1 hour after a 15-min calibration drive.  

The simulator consisted of a video game mock-up of a racecar wheel that controlled the virtual 

movements of the subject’s car on a computer monitor. A representation of the simulation field 

of view is shown in figure 5. The simulator also recorded various driver activity metrics, 

including lane position, speed, and acceleration.  Periodically throughout the experiment, the 

simulator delivered a “perturbation event,” which caused a virtual disturbance in the heading of 

the subject’s vehicle.  The amount of time the subject took to initialize a response is referred to 

as the perturbation event “reaction time” in the analysis.   
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Figure 5.  Representation of the simulation field of view. 

2.2 Automatic Detection of Alpha Bursts 

2.2.1 BioSemi System 

Throughout the driving simulation, the subject’s brain activity was monitored via a BioSemi 

EEG system (figure 6). The EEG hardware used in this study consists of 64 active channels and 

8 additional channels, which include electrooculography (EOG) channels and reference 

electrodes. Each channel recorded data, which were analyzed post-simulation using Matlab and 

the EEGLab toolbox (33). 

 

Figure 6.  The 64-channel BioSemi EEG System (33). 

2.2.2 Establishing Ground Truth 

In order to implement a fieldable algorithm to detect alpha bursts, a means of assessing the 

algorithm needed to be established. There was no standard protocol for identifying alpha bursts. 

Rather, an EEG expert is needed to manually identify “events” from EEG features. Part of the 

scope of this report includes the development of a standardized protocol for establishing ground 

truth for EEG features. The procedure for establishing ground truth is outlined here: 

1. Using a scale from 0–3 (0: No, 1: Maybe, 2: Probably, 3: Textbook Example), two 

independent reviewers examine all of the EEG data and record the start and end times of 

regions corresponding to alpha bursts, according to the following criteria: 

 

 

 

 

 

46 
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 • Presence of medium to high amplitude activity in the alpha range (8–13 Hz) located in 

the occipital and parietal lobes 

 • Duration of at least 0.5 s 

 • Alpha bursts separated by 1 s or less are combined into a single burst 

2. The two independent reviewers meet and examine all examples rating disagreements 

resulting from step one, deciding upon the absolute binary presence or absence of an alpha 

burst for each event. Any event with a score of 1 or 0 is eliminated from the dataset. 

3. The final list of alpha bursts for 80% of the subjects is sent to an expert (EEG 

neuroscientist with 10+ years of experience) for final review and to eliminate false 

positives.  The expert then blindly reviews the remaining 20% of subjects to establish a 

false negative rate. 

The implementation of Step 3 in the procedure was reduced from 80% of all subjects to one 

subject (4.3%) in the initial implementation and will be expanded to the full percentage in the 

final experimental implementation. 

2.2.3 Original Algorithm 

To ascertain the correlation between alpha bursts and drowsiness, Simon et al. developed an 

algorithm for the automatic detection of alpha bursts. A flowchart representation of this 

algorithm is pictured in figure 7. To estimate the characteristic (1/f
–β

) noise in the EEG signal, 

the algorithm applied an exponential fit to the amplitude spectral density (ASD) of each subject’s 

entire recording (20, 34). The algorithm epoched (discretely segmented) the data for each EEG 

channel into 1-s windows with an overlap of 750 ms across windows. To negate the effects of 

windowing the data, each window was zero-meaned and multiplied with a Hamming window. 

The short time Fourier transform (in its fast Fourier transform implementation) was computed to 

ascertain the spectral amplitude density in each window. The previously calculated noise 

approximation was applied to the current segment by multiplying the exponential curve by the 

ratio of the integrated mean spectrum of the current window to the integrated mean spectrum of 

the entire recording. The full width at half maximum (FWHM) of the alpha frequency peak was 

then calculated according to the following procedure. First, the two local minima surrounding the 

peak were located. From there, the “bottom” of the peak was calculated by averaging the 

amplitude of the local minima. The FWHM was considered to be the width of the peak at the 

height midway between the “bottom” and maximum of the peak. If the characteristics of the 

window met the following criteria, the window was said to contain an alpha burst: 

1. The peak ASD was in the alpha frequency band (7–13 Hz). 

2. The FWHM of the peak ASD was less than half the bandwidth of the Hamming window. 
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3. The area in the peak ASD above the noise estimate (signal) was greater than the area in the 

peak ASD below the noise estimate (noise). 

 

Figure 7.  Algorithm for automatic detection of alpha bursts (20). 

2.2.4 Fieldability Concerns 

Simon et al., in (20) attempted to address the fieldability concerns of using EEG by only 

requiring a single channel as input for this alpha burst detection algorithm. It is important to note, 

however, that the noise estimation portion of Simon et al.’s algorithm could not be implemented 

in real time since it required the entire EEG recording. Although Simon et al. partially addressed 

the fieldability concerns of using EEG as a drowsiness detector, a crucial step of the proposed 

algorithm was to estimate the noise across the frequency spectrum in the EEG signal. Simon et 

al. applied an exponential fit to the mean spectral amplitude density for the entire recording in 

each channel in order to approximate the nonlinear (1/f
–β

) noise that is inherent in EEG 

recordings (29). This curve acted as a barrier allowing one to distinguish between the signal (the 

spectral amplitude density above the curve) and the inherent EEG noise (the spectral amplitude 

density below the curve). In order to account for inter-subject and longitudinal noise variability, 

Simon et al. multiplied the noise estimation by the ratio between the integrated spectrum of the 

current window with the mean integrated spectrum of the entire recording. Since this noise 
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estimation scheme required post-processing of the entire recording, the algorithm outlined by 

Simon et al. could not be performed in real time. 

In order to implement a near-real-time alpha burst detector, the noise approximation scheme 

described by Simon et al. was adjusted. Rather than fitting an exponential curve to the entire 

recording and then applying a proportional curve to each window, as Simon et al., did,  an 

exponential curve was instead fitted to each window independently. An example window of the 

real-time implementation of the alpha burst detection algorithm is shown in figure 8. 

 

Figure 8.  Depiction of the spectral amplitude density of a one-second window  

during an alpha burst. The real-time noise approximation overlays  

the spectral amplitude density. 

2.2.5 Algorithm Optimization 

To improve the real-time implementation of the alpha burst detection algorithm, the EEG data 

was split into three subsets: a training dataset, a testing dataset, and a validation dataset (about 

70%, 20%, and 10% of the data, respectively). The EEG recordings from each subject were split 

into segments of roughly 100 s and randomly distributed into each dataset. The training dataset 

was used to choose the optimum channel and optimize the algorithm. The first step of the 

algorithm optimization procedure was to run the real-time implementation of the alpha burst 

detection algorithm for all 64 channels within the training dataset. Then the sensitivity (true 

positive rate) and specificity (true negative rate) were assessed for each channel using ground-

truth data. Treating the sensitivity and specificity scalar values as orthogonal vectors allowed us 

to find the optimal channel. The optimal channel had the minimum distance between the vector 

<sensitivity, specificity> and the vector <1, 1>. Once the optimal channel was discovered, the 

remaining optimization was specific to that channel. 
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Multiple parameters were independently optimized by running the alpha burst detection 

algorithm on the best channel while varying the values of each parameter—one parameter at a 

time. The sensitivity and specificity were calculated for each value of each parameter using the 

training dataset. The same technique described for finding the optimal channel was used for each 

parameter; the optimal value for the current parameter was discovered by finding the value that 

yielded the minimum distance between the vector <sensitivity, specificity> and the vector  

<1, 1>. This procedure was performed for the following parameters: window length, overlap 

between windows, minimum alpha frequency, and maximum alpha frequency. 

2.2.6 Testing and Validation 

Once the optimum values for each parameter were found, three iterations of the alpha burst 

detection algorithm were tested: the original algorithm, the real-time implementation of the 

algorithm with original parameters, and the real-time implementation of the algorithm with 

optimized parameters. For each iteration of the algorithm, the sensitivity and specificity were 

calculated using the testing dataset. 

A third dataset, the validation dataset, was used to verify that the training and testing datasets 

were representative of all the alpha burst data. To verify that the three datasets were statistically 

equivalent, we performed multiple two-sample hypothesis t-tests on the frequency of alpha 

bursts in each dataset.  We tested the null hypothesis that the frequency of alpha bursting in the 

training and validation sets, as well as the testing and validation sets, were equivalent.  

2.3 Eye-tracking 

2.3.1 SensorMotoric Instruments Eye-tracking System 

The subject’s eye movements were recorded by the SensoMotoric Instruments Eye-tracking 

System with sampling rate of 250 Hz and spatial resolution of 0.03°. This eye-tracking system 

remotely records the right- and left-eye-mapped pupil diameters (RmapD and LmapD), and the 

gaze measure x-y point-of-regard (PORx and PORy) in real time using a camera mounted on the 

simulator. Pupil diameter and point-of-regard data can be examined using plots such as the ones 

in figures 9 and 10, respectively. In figure 9, the horizontal plane represents the subject’s field of 

view. A frequency plot of viewed x-y coordinates reveals how the gaze was distributed across 

the field of view during a given time interval. In this case, the gaze is concentrated in the upper 

middle region of the simulation screen. In figure 10, both low and high frequency components 

are apparent in the temporal plot (time in sec) of pupil diameter (mm). Pupil diameter data are 

often examined in the frequency spectrum rather than the temporal domain. 
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Figure 9.  Gaze distribution of the eye on a 2-D screen. The 

horizontal plane represents the subject’s field of view. 

A frequency plot of viewed x-y coordinates reveals 

how the gaze was distributed across the field of view 

during a given time interval.  
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Figure 10.  Pupil diameter (mm) over time (s). 
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2.3.2 Pupil Diameter 

Eye-tracking was measured as “pupillary unrest” similar to the study in reference 26. The data 

were interpolated to 250 Hz and the DC offset eliminated by subtracting the mean from each data 

point. Next, the data were separated into 5-s windows. The FFT and power spectrum were 

calculated, and the spectral power between 0 and 0.8 Hz was measured for each window 

independently. Windows with gaps greater than two samples (assuming 250 Hz) were labeled as 

“bad windows” and were rejected from analysis. Figure 11 illustrates the pupil diameter data 

processing. 

 

Figure 11.  Flowchart of pupil diameter data processing. 

2.3.3 Gaze Distribution 

Gaze distribution was measured with a velocity-based metric. The average velocity of the eye’s 

(x,y) point-of-regard was calculated for every 5-s window. This method was selected to 

minimize the effects of differing strategies of completing the simulation. The visual field actually 

required to successfully complete the simulation was very small, as the speedometer was placed 

on top of the road itself, and no complex maneuvers requiring foresight were required. Fixations 

on a particular area of interest could be indicative of the way that the subject chose to complete 

the simulation (simply staring at the speedometer and focusing on maintaining the exact speed), 

or of actual drowsiness affecting their gaze distribution. This factor was not controlled for, so the 

velocity-based metric does not favor a fixation at any single point on the screen, but is rather a 

representation of the eye’s overall movement. Both methods would be confounded by this 

simulation design, but the velocity-based method averaged across windows minimizes its effect. 

Pupil 

 Diameter 

Eliminate DC Offset 

Interpolate data to 250 Hz 

Calculate FFT and Power Spectrum 

Measure spectral power 0 – 0.8 Hz 

Reject windows with gaps greater than 2 

samples at 250 Hz in the original data 

Separate data into 5 sec. windows 
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For quality-control of the data, all (0,0), (x,0), and (0,y) points were removed, as they 

represented missing data points in the dataset due to the gaze leaving the simulation field of view 

or the camera losing sight of the pupil. Next, intervals with a sampling rate ranging from  

240–260 Hz were used exclusively to minimize error due to non-uniform sampling. This data 

were separated into 5-s windows and synced to windows established in the pupil diameter data. 

The average velocity of the point of regard was returned for each window, and then windows 

with less than 20% of the mean window sample size were labeled as “bad windows” and were 

rejected from analysis. Figure 12 illustrates the gaze distribution data processing. 

 

Figure 12.  Flowchart of gaze distribution data processing. 

2.4 Behavioral Indicators of Fatigue  

Behavioral data, recorded at 90–100 Hz, were provided by the Driving Simulation and contained 

information regarding the state of the vehicle in the simulation at a given point in time.  The 

driver performance metrics recorded by the simulator included X and Y coordinates, speed, and 

acceleration.  In addition, the simulation generated a perturbation that distorted the heading of 

the vehicle at evenly distributed intervals, which the driver had to correct for. The reaction time 

of the driver provided an additional behavioral metric to analyze. 

In order to classify this behavioral driving data, we analyzed them using two different 

procedures: the first methodology used regularly spaced windows and the second methodology 

separated data into discrete, event-specific windows. The continuous window approach involves 

analysis of driver performance metrics, including standard deviation of lane position and 

Select intervals with adjacent 240-260 Hz 

data points 

Remove (0,0), (x,0), (0,y) missing data 

points 

Separate data into 5 sec. windows 

synched to pupil diameter windows 

Return average interval saccade velocity 

for each 5 sec. window 

Gaze 

Distribution 

Reject windows with less than 20% of the 

mean sample size 
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standard deviation of acceleration, in continuous windows for the duration of the experiment.  

The discrete, event-specific approach involves analysis of driver performance metrics in the 

window of time surrounding a specific event, in our case the reaction time to a perturbation 

generated by the simulation.  For a graphic depiction of the two approaches, see figure 13. 

 

 

Figure 13.  Graphical representation of two approaches to windowing driver performance data. 

2.5 Cross Correlations 

To analyze inter-subject variability in each metric we used for analysis, we performed multiple 

one-way analysis of variance (ANOVA) tests on gaze distribution, pupil dilation, standard 

deviation of lane position (SDLP), and standard deviation of acceleration (SDA). Each ANOVA 

analysis involved only one of the aforementioned metrics and compared the variability of each 

subject with respect to the metric being analyzed. To prepare analysis of the correlations between 

the three sensor modalities, we first had to sync all data streams to a universal clock, eliminating 

windows that were not in sync among all sensors analyzed.  This involved performing linear 

transformations to the time indices of the data that accounted for both a constant offset time and 

a linear drift term.  In addition, windows were removed from all data streams that were deemed 

“bad windows” for either the pupil diameter or gaze distribution data. 

In order to find the cross-correlation coefficients, linear correlation analysis was performed 

between each of the eye-tracking and driver performance parameters: gaze distribution, pupil 

diameter, STDLAT, and SDA. Due to a lack of coinciding alpha bursts with “good windows” of 

eye-tracking and driver performance data, no cross-correlation coefficients were calculated 

between alpha bursts and the aforementioned metrics. 

 

 

 

 

Continuous Window Approach 
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3. Results 

3.1 Detection of Alpha Bursts 

3.3.1 Algorithm Improvement 

Figure 14 illustrates the sensitivity and specificity for each channel. The red dot indicates the 

minimum distance to the vector <1, 1> (located in the top left corner), and therefore corresponds 

to the optimal EEG channel—Parietal-Occipital 7 (PO7). The real-time implementation of the 

algorithm with all of the original parameters yielded a sensitivity of 63% and a specificity of 

80% for the PO7 channel. 

 

Figure 14.  Graphical representation of the average sensitivity and specificity for all participants for 

each EEG channel, and the corresponding location of each EEG channel. The PO7 channel 

is red in order to highlight that it is the optimal channel. 

Table 1 exhibits the remaining algorithm parameters that were optimized for improved 

sensitivity and specificity using the training dataset. The overlap between windows did not 

change through optimization. However, the window length, minimum alpha frequency, and 

maximum alpha frequency parameters were improved through this optimization. 
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Table 1.  List of the parameters with original values and optimized values shown. The sensitivity and specificity 

(from training data) for each parameter before and after optimization are also included. 

Parameter 
Original 

Value 

Original 

Sensitivity 

Original 

Specificity 

Optimal 

Value 

Optimal 

Sensitivity 

Optimal 

Specificity 

Window 

Length 
1 s 63% 80% 1.4 s 66% 76% 

Overlap 

(% Window) 
75% 64% 76% 75% 64% 76% 

Minimum 

Alpha 

Frequency 

7 Hz 65% 77% 8.1 Hz 65% 81% 

Maximum 

Alpha 

Frequency 

13 Hz 64% 77% 12.1 Hz 67% 78% 

 

3.3.2 Testing and Validation 

Table 2 displays the sensitivity, specificity, and performance coefficients of the algorithm in its 

original state, when it is implemented in real time with the original parameters, and when it is 

implemented in real time with the optimized parameters. The original algorithm yielded a high 

specificity, but low sensitivity. Implementation of the algorithm in real time with the original 

parameters caused the specificity to decrease and the sensitivity and the performance coefficient 

to increase. Optimization of individual parameters yielded an improvement in the sensitivity and 

specificity of the algorithm. 

Table 2.  Sensitivity, specificity, and performance coefficients (from testing data) for all three iterations of the 

alpha burst detection algorithm are shown.  

 Original Algorithm 
Original Algorithm 

Implemented in Real-Time 

Optimized Algorithm 

Implemented in Real-Time 

Sensitivity 36% 67% 69% 

Specificity 93% 78% 80% 

Performance 

coefficient 
71% 73% 75% 

 

As described above, we performed two-sample t-tests on the frequency of alpha bursting in each 

dataset.  Below are the p-values for the hypothesis that the frequency of alpha bursting in two 

datasets is equivalent (i.e., the below p-values are indicative of the probability that any observed 

difference in the frequency in alpha bursting was due to random chance.) 

• Training to Validation: 0.53 

• Testing to Validation: 0.75 

The p-values generated by the t-tests do not disprove the hypothesis that the three datasets are 

statistically identical. 
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3.4 Eye-tracking 

Figure 15 is a pictorial representation of the change in gaze distribution across a complete test of 

a single subject. The left histogram shows the beginning third of the data, and the right histogram 

shows the last third of the data. The horizontal plane is a representation of the simulation field of 

view, separated into super-pixels. The vertical bars represent the number of data points at which 

the eye point-of-regard was in that super-pixel. The temporal change in spatial gaze distribution 

is obvious for each subject, but differs significantly between subjects. 

 

Figure 15.  Gaze distribution difference over simulation duration. The horizontal plane is a representation of the 

simulation field of view, separated into super-pixels. The vertical bars represent the number of data 

points at which the eye point-of-regard was in that super-pixel. 

3.5 Cross Correlations 

The analysis performed was limited to gaze distribution, pupil diameter, standard deviation of 

lane position, and standard deviation of acceleration. The limited analysis was due to limited 

overall data quantity.  Specifically, this was the result of both malfunctions in the eye-tracking 

system and an inconsistent clock among sensor modalities. These problems yielded large regions 

of missing and incomparable data among the three sensor systems.  This substantially reduced 

the amount of data available for each modality, and particularly impacted the behavioral 

analysis.  In addition, of the remaining data, there was only a very small portion that was 

overlapping; thus, we could not complete cross modality comparisons with significant statistical 

power, one of the initial project goals.  Recommendations for improving data quality in future 

experiments are included in a separate report (32). Only the continuous window approach was 

used for the results detailed below.  The primary method of analysis used for these measures was 

linear correlation analysis. 

The R
2
 values calculated from the correlation coefficients between eye-tracking and driving 

metrics are reported in table 3. The majority of the coefficients were insignificant. The 

significant results, 90% confidence (yellow) and 95% confidence (green), indicated very low 

correlation coefficients. No single subject or combination of parameters yielded a statistically 

significant p-value. Inter-subject variation seems to dominate the results. 

 First Third of Time               Last Third of Time 
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Table 3.  R
2
 values for all correlation combinations. The green cells have 95% confidence (p<=0.05) and the 

yellow cells have 90% confidence (p<=0.1).   

Subject Gaze-Pupil Gaze-SDA Gaze-SDLP Pupil-SDA Pupil-SDLP SDA-SDLP 

11 0.0000 0.0047 0.0000 0.0007 0.0073 0.0069 

12 0.0905 0.0012 0.0120 0.0050 0.0233 0.0049 

13 0.0190 0.0136 0.0000 0.0153 0.0002 0.0001 

15 0.0085 0.0032 0.0015 0.0046 0.0606 0.0044 

16 0.0001 0.0005 0.0596 0.0026 0.0017 0.0004 

17 0.0114 0.0010 0.0005 0.0006 0.0005 0.0009 

18 0.0015 0.0004 0.0039 0.0001 0.0010 0.0130 

Note: Gaze = saccade velocity measure (eye measure), Pupil = Low frequency pupil diameter (eye measure), 

SDA = standard deviation of acceleration (driving measure), and SDLP – standard deviation of lane 

position (driving measure). 

The F statistic for each of the one-way ANOVA tests was large, indicating that the probability 

that each subject’s data (across all sensor modalities) comes from the same distribution is nearly 

zero.  This indicates that non-parametric statistics are necessary in order to combine data across 

subjects in analyzing correlations. 

No analysis could be completed regarding the correlation of alpha bursts with eye data because 

none of the alpha bursts coincided with “good windows” in the eye-tracking data. Therefore, all 

of the data containing alpha bursts were thrown out before the correlation analysis. 

4. Conclusions 

4.1 Detection of Alpha Bursts 

By adjusting the noise approximation methods in the algorithm in reference 20 to implement a 

real-time alpha burst detection algorithm, we were able to contribute to the development of a 

fieldable, EEG-based drowsiness detector. Since the window length is relatively short in the real-

time implementation of the alpha burst detection algorithm, the noise present within each 

window fluctuates significantly. One might expect this variation in noise to degrade the noise 

approximation. However, estimating the noise on a window-by-window basis proves to be more 

adaptable to differences in noise between subjects and with time. The real-time implementation 

yields a higher performance coefficient than the original algorithm, in addition to being fieldable. 

Independently optimizing parameters of the real-time implementation of the alpha burst 

detection algorithm improves the sensitivity and specificity of the overall algorithm as well. The 

algorithm performed better on the PO7 channel than on any other channel. This is consistent with 

the finding that the primary source of the alpha rhythm is in the posterior and occipital regions of 

the brain (13). The optimal alpha frequency range for the algorithm was 8.1–12.1 Hz (changed 

from 7–13 Hz). These changes reflect the alpha burst frequencies in the ground-truthed data. The 
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new minimum alpha frequency cutoff is consistent with most views of the alpha frequency range 

of 8–13 Hz (13). The decrease in the upper limit of the alpha frequency indicates that the 

majority of alpha bursts in this study were contained within the lower alpha band (8–10 Hz). 

Activity in the lower alpha component is indicative of cognitive processing and mental effort 

(35). 

4.2 Cross Correlations 

The majority of the correlations between driving data and eye-tracking measures (reported in 

table 3) were of low confidence.  Low confidence, where alpha is defined as 0.05 or greater, is 

indicative of correlations that cannot be statistically differentiated from the lack of a correlation.  

While some metrics for some subjects appear statistically significant in our results, they appear 

to indicate a very weak correlation.  Additionally, these low-correlation-high-confidence results 

appear highly subject-specific.  The high inter-subject variability in eye-tracking measures and 

driving performance, as indicated by ANOVA, partially helps to explain this result.  In order to 

perform further analysis on the universal correlations between these reported metrics, non-

parametric statistics must be used to account for inter-personal variation.  In additional, a larger 

quantity of clean data are necessary to obtain resolution with respect to the many low-confidence 

correlations observed. 

With respect to the eye-tracking data, it is apparent that these measures cannot be used 

exclusively for drowsiness detection.  Without specific measures of a subject’s position in space 

relative to the eye-tracking device, head motion can cause significant degradation of data quality.  

Furthermore, extended periods of eye closure, which are associated with drowsiness, can result 

in significant data loss.  For these reasons, sensor fusion is necessary to compensate for periods 

of data loss and is the most effective means for the optimization of complex physiological state 

determination. 

4.3 Future Work 

Given the limited time-frame, this summer project is a small piece of a larger effort to accurately 

predict degradation of driving performance due to drowsiness. In order to further improve the 

alpha burst detection algorithm, the integration of multiple EEG channels should be investigated. 

A central decision engine could treat each channel as an individual sensor, which would yield 

more accurate results than would a single channel. In this distributed sensor scheme, the 

transmitted information to the central decision engine would be on the level of bits per time 

interval. Therefore, the accuracy of the algorithm would be improved without sacrificing power 

or bandwidth. This setup also aims to improve the robustness of the detector by giving each 

alpha burst detector a relatively small weighting in the decision engine algorithm. 

With an improved dataset, logistic regression could be used to analyze the correlation of alpha 

burst presence or absence with the continuous metrics representing driving performance and eye 

movement.  Additionally, one could use paired sample t-tests to test the hypothesis that alpha 
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burst presence is associated with different mean driving performance, pupil diameter, or gaze 

distribution.  Future analysis could also make use of the event-specific window approach detailed 

above.  This analysis could include the correlations between eye-tracking, driver performance 

measures, and alpha burst presence with respect to one’s reaction time to a perturbation. 

The continuation of this project should include the addition of other eye-tracking measures, 

especially PERCLOS. Additionally, EOG recordings provide several measures like blink 

amplitude/velocity and saccade velocity, which have the potential to enhance drowsiness 

assessment and driver performance prediction capabilities. Other measures indicative of the 

autonomic nervous system like skin conductivity and measures derived from heart rate, or body 

orientation data are also viable paths forward, but as these parameters were not investigated as 

part of this HRED study, their inclusion would require further experimentation. A complete 

assessment of the data and recommendations for future experiments can be found in  

reference 32. 
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List of Symbols, Abbreviations, and Acronyms 

ANOVA analysis of variance  

ASD amplitude spectral density  

EEG electroencephalography  

EOG electrooculography  

FWHM full width at half maximum  

GAZEDIS  gaze distribution  

HRED Human Research and Engineering Directorate 

KSS Karolinska Sleepiness Scale  

NTSB National Transportation Safety Board  

PO7 Parietal-Occipital 7  

PVT psychomotor vigilance test  

SDA standard deviation of acceleration 

SDLP standard deviation of lane position 

STDLAT  standard deviation of lateral lane position  
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